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Introduction

There is a great mathematics story that I was told in a lecture at university. It involves 
two donkeys and a fly. The problem goes that two donkeys are 100 metres apart and 
walking directly towards each other at 1 metre per second. A fly starts on the nose of 
the first donkey and buzzes between the noses of the two donkeys at 10 metres per 
second. The question is, how long before the fly is crushed between the two 
donkeys?

One of the ways to solve this problem is summing an infinite series (i.e. summing the 
terms of a sequence that continues forever). On its way to the second donkey the fly 
is travelling for 100

11  seconds, then on the way back 900
121 seconds, then another 8100

1331  sec-
onds, and so on. The nth term of the geometric series is given by 100

11  × ( 9
11)n-1 and so 

the sum to infinity of the series is 100/11
1 – 9/11 = 100/11

2/11  = 100
2  = 50 seconds. 

The other way to solve the problem is to ignore the fly completely. Each donkey is 
walking at 1 metre per second. This means that they will meet halfway at 50 metres. 
If they travel 50 metres at 1 metre per second it will take 50 seconds.

The story goes that a group of university students were told that a natural mathema-
tician would automatically try to solve the problem using an infinite series and a 
natural physicist would solve it using the simpler approach. The problem therefore 
sorted mathematicians from physicists: if a student were able to solve it in a few sec-
onds they were a physicist and if not they were a mathematician. The undergraduates 
were posing the problem to various students passing through the university library 
when the famous mathematician Leonhard Euler walked by. They presented the 
problem to Euler and were amazed when he answered the problem within a few sec-
onds, as they had automatically expected him to begin considering the infinite series. 
When one of the students explained that a natural mathematician would have begun 
by forming the infinite series for the motion of the fly, Euler replied, ‘But that is what 
I did …’

A very similar story exists about the eminent mathematician and computer scientist 
John von Neumann and trains, which makes me suspect that this is at best a parable 
about Euler and at worst a case of Chinese whispers. However, the point of the story 
is not to show how good at mathematics Euler (or von Neumann) was, but instead to 
show that sometimes in mathematics the way you think about the calculation or 
problem you are solving has a great impact on how simple the problem is or how 
much sense it makes. Only the best A level mathematics students would be able to 
form the infinite series necessary to solve the problem, whereas most early secondary 
school pupils would be able to work out the simpler solution. 
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The importance of having different ways to view even the most simple mathematics, 
in order to build up to more complicated ideas, cannot be overstated. Some ways of 
thinking about numbers make some truths self-evident, whilst simultaneously 
obscuring others. In the same way in physics that it is sometimes better to view ele-
mentary matter as particles and at other times as waves, so in mathematics it is 
sometimes better to view numbers as discrete and at other times as continuous, as 
counters or bars, as tallies or vectors. Crucially for teachers, being explicit about how 
we are thinking about numbers and operations, and encouraging pupils to think 
about them in different ways, can add real power to their learning.

Much has been made of the effectiveness of metacognition in raising the attainment 
of pupils. For example, John Hattie lists metacognitive strategies as having an effect 
size of 0.6 in the most recent list of factors influencing student achievement.* Ofsted 
also recognises the importance of the use of manipulatives and representations to 
support flexibility in pupil thinking. In their Mathematics: Made to Measure report 
from 2012, it is noted that schools should choose ‘teaching approaches and activities 
that foster pupils’ deeper understanding, including through the use of practical 
resources, [and] visual images’.† In Improving Mathematics in Key Stages Two and 
Three, the Education Endowment Foundation lists ‘Use manipulatives and rep-
resentations’ as one of its key recommendations.‡ It is therefore important that we 
give the pupils the tools they need in order to think about the mathematics they are 
working with in different ways. 

The use of representations and structure is also an important part of teaching for 
mastery approaches. The National Centre for Excellence in the Teaching of 
Mathematics (NCETM) lists representation and structure as one of the ‘Five Big 
Ideas’ in teaching for mastery.§ The NCETM make clear that using appropriate 
representations in lessons can help to expose the mathematical structure being 
taught, allowing pupils to make connections between and across different areas of 
maths. They also emphasise that the aim in using these representations is that pupils 
will eventually understand enough about the structure such that they do not need to 
rely on the representation any more. This is often summarised as employing a 
concrete-pictorial-abstract (or CPA) approach to teaching mathematics. 

Recently re-popularised in the UK following the focus on teaching approaches 
imported from places such as Shanghai and Singapore, the CPA approach actually has 
at least some of its roots in the 1982 Cockcroft Report, which reviewed the teaching 

* See https://www.visiblelearningplus.com/sites/default/files/250%20Influences.pdf.
† Ofsted, Mathematics: Made to Measure (May 2012). Ref: 110159. Available at: https://www.gov.uk/government/publications/

mathematics-made-to-measure, p. 10.
‡ See P. Henderson, J. Hodgen, C. Foster and D. Kuchemann, Improving Mathematics in Key Stages Two and Three: Guidance Report 

(London: Education Endowment Foundation, 2017). Available at: https://educationendowmentfoundation.org.uk/public/files/
Publications/Campaigns/Maths/KS2_KS3_Maths_Guidance_2017.pdf, pp. 10–13.

§ See https://www.ncetm.org.uk/resources/50042.
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of maths in England and Wales.* The Cockcroft Report advocated (among many other 
things) the need to allow pupils the opportunity of practical exploration with con-
crete materials before moving towards abstract thinking.

There are several studies on the use of manipulatives across the age and ability range, 
with most showing that mathematics achievement is increased through the long-term 
use of concrete materials. The most comprehensive of these is Sowell’s ‘Effects of 
Manipulative Materials in Mathematics Instruction’, a meta-analysis of 60 individual 
studies designed to determine the effectiveness of mathematics instruction with 
manipulative materials.† Those surveyed ranged in age from pre-school children to 
college-age adults who were studying a variety of mathematics topics. Sowell found 
that ‘mathematics achievement is increased through the long-term use of concrete 
instructional materials and that students’ attitudes toward mathematics are improved 
when they have instruction with concrete materials provided by teachers knowledge-
able about their use’.‡

The aim of this book is to explore some of the different concrete materials available to 
teachers and pupils, ways of using these concrete and pictorial approaches to repre-
sent different types of numbers as discrete or continuous, how certain operations 
work when viewing numbers in these ways, and how these various representations 
can help to support the understanding of different concepts in mathematics. The book 
will look at the strengths of each representation, as well as the flaws, so that both pri-
mary and secondary school teachers of mathematics can make informed judgements 
about which representations will benefit their pupils. I will draw on my own experi-
ence of using the representations, as well as experiences shared by others, and 
appropriate research in order to support teachers in understanding how these rep-
resentations can be implemented in the classroom.

How to use this book

I have often noticed that one of the difficulties pupils have in acquiring new mathe-
matical understanding is that we introduce new ways of representing or thinking 
about mathematics at the same time as we try to teach a new mathematical concept 
or skill. I will take an alternative approach here, which is to explore all of the rep-
resentations first and then, once they are secure, examine how more complicated 
calculations and concepts can be developed. 

* W. H. Cockcroft (chair), Mathematics Counts: Report of the Committee of Inquiry into the Teaching of Mathematics in Schools  
[Cockcroft Report] (London: HMSO, 1982). Available at: http://www.educationengland.org.uk/documents/cockcroft/
cockcroft1982.html.

† E. J. Sowell, Effects of Manipulative Materials in Mathematics Instruction, Journal for Research in Mathematics Education, 20(5) 
(1989), 498–505. Available at: http://www.jstor.org/stable/749423?read-now=1&seq=7#references_tab_contents.

‡ Sowell, Effects of Manipulative Materials in Mathematics Instruction, 498.
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I wouldn’t introduce all of these representations at once with pupils; instead I would 
introduce two or three. Importantly, though, I would ensure that pupils are comfort-
able with the representation before trying to use the representation to explore a new 
concept. This generally involves introducing the representation to pupils within a 
concept they are comfortable with, and modelling with them how the representation 
fits with what they already know. This then allows the teacher to develop the concept 
into something new, using the representation as a bridge. 

As this book is aimed at teachers, Chapter 1 will set out all of the representations 
within the secure concept of whole numbers, and Chapter 2 will then extend these 
representations to include fractions and decimals. The basic operations of addition 
and subtraction of whole numbers will be introduced in Chapter 3, followed by mul-
tiplication and division of whole numbers in Chapter 4, and powers and roots of 
whole numbers in Chapter 5. Chapter 6 then explores these ideas as applied to frac-
tions and decimals. Chapter 7 examines the use of representations to illustrate the 
fundamental laws of arithmetic, and then in Chapter 8 we look at how these combine 
to define the correct order of operations in calculations involving multiple operations. 
Chapter 9 covers the concepts of accuracy, including rounding, significant figures and 
bounds, before we move on to irrational numbers in Chapter 10.

Chapter 11 sees the introduction of different representations applied to algebra, after 
which we progress to manipulating algebraic expressions by simplifying expressions 
(Chapter 12), multiplying expressions (Chapter 13) and expanding and factorising 
expressions (Chapter 14). In Chapter 15 we look at how representations can support 
with illustrating the solutions of equations, and then Chapter 16 examines some 
particular algebraic manipulations not covered in Chapters 12 to 14 – in particular, 
the difference of two squares and completing the square. Finally, Chapter 17 seeks to 
answer some of the questions about the use of representations in the classroom that 
may arise from the reading of the book. 

You will notice while reading the book that some key mathematical terms are pre-
sented in bold – for your convenience these terms are defined in a glossary, found at 
the back of the book.

The fact that the book spans almost the complete breadth of primary and secondary 
school mathematics might make some question the usefulness of covering everything 
in one text. One reason I have chosen to do so is that I feel it is important that teachers 
understand not just the stage they are teaching, but also how this builds on what has 
been taught before and how this is built on in the stages after. This ensures that teach-
ers see how what they are teaching fits into the wider pupil journey, and can support 
pupils no matter where they are along the way. Pupils will enter and leave stages of 
schooling at many different points, and just because we might teach in a secondary 
school doesn’t mean we won’t need to support pupils who haven’t secured concepts 
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from primary school, or similarly that teachers in primary schools won’t need to pro-
vide depth in a topic by allowing pupils to explore a concept to a point that would 
normally be taught in secondary school. In this, all-through (3–18) schools have an 
advantage as they can design their curriculum to build all the way through the school. 
Those working in separate primary and secondary schools, or other school models, 
must use strong transition links to make this happen. So, for primary school teachers, 
this book showcases the mathematics you will teach and show you how it extends 
into secondary school. For secondary teachers, this book will provide some insight 
into approaches that might be used in feeder primaries and how you can develop 
them in secondary school.

I hope this book will support teachers in choosing suitable representations for use in 
their classrooms by making them much more secure in their own understanding of 
the strengths and weaknesses of each representation, but also, importantly, of how 
the representations highlight different interpretations of the concepts we explore 
with pupils. Some of the examples in the book will be suitable for direct use with 
pupils in the classroom, whilst some will be of more benefit to teachers in developing 
their own understanding. Pupils will very often need more than the one or two exam-
ples illustrated at each stage; in many cases, they will need to experience careful 
modelling with multiple examples as well as have the opportunity to explore concepts 
with the different manipulatives and representations provided. Only in this way will 
pupils eventually move beyond the representations. 

The true aim of this book is for teachers to feel sufficiently confident in the use of the 
representations that they can explain enough about the underlying structures of the 
different concepts so that pupils no longer need to rely on the representations to see 
these structures. This is an important end goal for teachers to keep in mind – pupils 
should be aiming to move beyond the representation. Representations are tools that 
provide a window into the underlying structure of a concept. They are a window that 
pupils can keep coming back to look into, but they are not a window they should con-
tinually have to stare through. There is a danger that representations become another 
procedure that pupils have to remember and apply without understanding; this must 
be avoided at all costs if pupils are going to work towards mastery of mathematical 
concepts. This is why multiple representations are used for each concept, and why 
the literature makes clear the need for multiple representations to ensure pupils have 
a range of ways of thinking about concepts.
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Chapter 1

Different representations 
of whole numbers

Many people believe that counting was the earliest mathematical concept to emerge. 
Whilst counting can be traced back several thousands of years, the first mathematical 
idea was actually the one-to-one relationship – relating a number of objects with an 
equal number of different objects. According to Kris Boulton, ancient shepherds 
would allow their sheep out to graze during the day, and for every sheep that went 
out they would put a stone into a pot. At the end of the day, the shepherds would bring 
the sheep back into the pens to keep them safe from predators. As each animal 
returned, the shepherds would remove a stone from the pot. When the pot was empty, 
all the sheep were safely back.* Interestingly, it seems that no concept was required 
for how many sheep there were, just that the number of sheep was equal to the num-
ber of stones.

The earliest example of counting itself is thought to be the Ishango bone, which bears 
scratch marks grouped in 60s. Discovered in Africa in 1960, the bone is believed to be 
more than 11,000 years old and is seen by many as the earliest example of a mathe-
matical structure.† There is still not complete consensus about what these scratch 
marks represent, but one theory is that they are related to some form of lunar calen-
dar. This would make sense given the prevalence of the number 60 in ancient 
time-keeping; indeed, our own 60-minute hour and 60-second minute can be traced 
back to the ancient Babylonians and their base 60 number system. 

Both of these approaches treat numbers as discrete objects: you have one sheep, two 
sheep or three sheep (even though the shepherds weren’t actually counting them); 
you have one scratch, two scratches or three scratches. These earliest occurrences of 
numerical relationships are still relatable to a mathematical representation that we 
use today to show and track discrete values – tallying.

* Kris recounted this story in his presentation ‘The Stories of Mathematics – Part 1’ at the Complete Mathematics Conference 5, 
Sheffield, 26 September 2015.

† See http://www.math.buffalo.edu/mad/Ancient-Africa/ishango.html.
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Tallying

Tallying is probably one of the most basic representations of discrete number. In the 
English national curriculum, tally charts are introduced in Year 2 (age 6–7), although 
they could be used as a pictorial representation of number in Year 1 or earlier. 
Children are often taught to count before entering any statutory stage of education, 
and in the Early Years Foundation Stage statutory framework it is required for pupils 
to ‘improve their skills in counting, understanding and using numbers, [and] calculat-
ing simple addition and subtraction problems’.*

The use of one mark per item to count harks back all the way to the earliest one-to-
one relationships, and is a representation of number that nearly all mathematics 
students can grasp. The basic tenet of the representation is that a vertical line is used 
to represent a discrete value (normally 1) and these are grouped together in 5s or 10s 
when counting large numbers:

| = 1 || = 2 ||| = 3 |||| = 4 |||| = 5  |||| | = 6 

It is very unusual for a tally mark to stand for anything other than 1, although theo-
retically it is possible (e.g. using pictograms to represent data takes advantage of this 
idea to represent large numbers). Tallying is severely deficient as a representation of 
number for anything other than the counting of a small discrete number of objects. 
Representing negative numbers is also problematic, to the point where no one would 
really consider using it. However, it is a valid representation of discrete number that 
can support young children to master counting and create a semi-permanent record, 
so its value should not be underestimated. Indeed, much medieval accounting was 
done using tallying – marks representing the value of goods or items traded or bor-
rowed would be carved onto a piece of wood using large tally marks. The wood would 
then be split along its length so the notches appeared on each half. This provided both 
parties with a record of the trade that couldn’t be altered, and only those two pieces 
of wood could fit together to confirm they were records of the same trade. Students 
of mathematics should definitely be aware of tally marks as a representation for 
counting small discrete values, and possibly some of the history around them, but 
they should also be aware of the limitations of this representation in moving mathe-
matics forward.

It wasn’t until the emergence of complex civilisations that more sophisticated views 
of numbers developed. As early as 4000 BC, the ancient Sumerians lived in cities, 
some of which may have had up to 80,000 residents. This required proper 

* Department for Education, Statutory Framework for the Early Years Foundation Stage: Setting the Standards for Learning, 
Development and Care for Children from Birth to Five (March 2017). Available at: https://www.gov.uk/government/publications/
early-years-foundation-stage-framework--2, p. 8.
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administration and consequently more sophisticated mathematics. Taxes needed to 
be collected and recorded, resources counted and measured, wealth calculated and 
compared. It is here that we see the birth of one of the more versatile discrete number 
representations – tokens, or counters.

Counters

Counters certainly have many advantages as a representation of discrete numbers 
when compared to tallying. It is much easier to assign different values to counters 
(think of the number of different value coins that have existed in various world cur-
rencies) and so take relationships beyond the one-to-one relationships that were a 
hallmark of very early mathematics and counting systems. The fact that counters can 
be removed, as well as added to, allows for the development of arithmetic, which was 
crucial in developing the mathematics required to manage the complex financial cal-
culations needed to administrate a city.

In the mathematics classroom, counters can be used in a variety of ways to support 
pupils’ understanding of different types of numbers. At a simple level, counters can 
be used to represent positive integers in the same way that tallies do:

= 1 = 2 = 3
However, the versatility of counters more readily allows for them to hold different 
values, either by using different colour counters or ones that can be written on. For 
example, place value counters can be used to support an understanding of large 
numbers:

10 100 10001
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This allows large numbers to be represented without needing thousands of counters 
– for example:

10 10

10 10

10 10

100

100

1 1
1 = 263

In addition to representing larger numbers, counters also have an advantage over 
tallies in that they can simultaneously represent positive and negative numbers, 
which is done using either two different colours or, if available, double-sided 
counters:

= 1 = -1
The ability to use counters to simultaneously represent positive and negative num-
bers means that counters are an excellent way to develop directed number arithmetic. 
Crucial to this is the understanding that a ‘1’ counter plus a ‘-1’ counter results in 0. 
Indeed, a pair of these together (like the pair below) are often called a zero-pair.

= 0 (‘zero-pair’)

Both tallies and counters have one crucial drawback, however: they only represent 
numbers as discrete quantities. In both cases it isn’t clear that there are numbers 
between 1 and 2, and whilst it is possible to represent fractions and decimals using 
counters once these concepts are well defined, it is very difficult to introduce the idea 
of either fractions or decimal numbers using solely counters or tallies. The first rep-
resentation that begins to show numbers as both discrete and continuous is one very 
familiar representation – the number line.
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